
Grove 4-digit display -
Migrating an Arduino Library to Nspire Python

Hans-Martin Hilbig

 Teachers Teaching with TechnologyTM

Grove 4-digit display - Migrating an Arduino Library to Nspire Python

2020 T3 Europe - 2 -

Overview

Arduino, based on C++, is a popular programming language in the Maker Space and at
Schools. Numerous low-cost sensors are available to be used with Arduino Microcontroller
boards. Driver libraries are available from Open-Source portals like github.com. Although
syntactically different, Python shares with Arduino its object orientation, its Open-Source
nature and its popularity.
Different from Arduino, Python is an interpreter-based language, making it particularly easy
for young students to create and debug their code. As an integrated learning system with all
applications from coding, debug, data analysis and graphical display in one program, the TI-
Innovator System ensures teachers and students focusing on the coding topic instead of
infrastructure issues in their STEM (MINT) courses at school.
This project shows the process of migrating an existing Arduino driver library for a non-trivial
peripheral like the Grove 4-digit display to a driver library for the TI-Innovator Hub
Microcontroller module as part of the TI-Innovator system.

The Grove 4-digit display module

The main components of the Grove 4-digit display module are a multiplexed 4-digits-wide
common Anode seven-segment numeric display and a special silicon chip called TM1637,
made by Titan Microelectronics [1]. The TM1673 is providing a two-pin MCU digital interface,
data latch and LED output drivers. Although the MCU interface is similar to the popular 2-pin
I2C standard, its protocol is slightly different and needs a custom software code to control.
The major industrial applications of the 4-digit display are induction cookers, micro-wave
ovens and other small household electrical appliances.

The 4-digit Arduino driver library

There are multiple 4-digit display driver libraries available on the Internet. In this project, the
TM1637Display.h and TM1637.cpp libraries created by Avishorp have been used [2]. Three
aspects have been the major reasons for this choice: First, the library is object oriented,
allowing multiple instances of the 4-digit display to be used in parallel. Second, the library
provides a broad suite of methods to be used, from full custom segment code creation,
display of positive and negative decimals, all the way to the display of hexadecimal numbers.
Third, the library was written in a strict hierarchical manner, with lower-level methods being
used by higher-level methods. This ensures the major migration effort to be focused on the
hardware abstraction layer itself, with all other layers ‘only’ needing the translation effort from
Arduino to Python syntax.

The 4-digits Arduino hardware interface

The 4-digit display [3] is connected to an Arduino board via a 4-pin Grove cable. Pin 1 is
GND, pin 2 Vdd (3.6V-5V), pin 3 is the dio pin and pin 4 the clk pin. Similar to I2C, pin 3 and
pin 4 have pullup resistors connected to Vdd. This allows a bi-directional use of the dio pin
being a data input as well as a data output for handshaking/acknowledge purposes.To cope
with this kind of hardware interface, the signal pin of the Arduino board is either set to an
active low output, to provide a logic ‘0’ to the clk/dio pins. Or, the signal pin is programmed to
act as a high impedance input, using the pinmode() function in Arduino. In this case, the
input would be pulled up to Vdd via the integrated pullup resistors of the Grove board. The
Arduino board would be able to read the state of the acknowledge signal on the dio-pin.
Different to the TI-Innovator Hub, the Arduino pinmode(),digitalRead() and digitalWrite()
functions are almost identical in code execution speed and are able to be toggled in the 3-
digit kHz range, at least. This ensures a fast data communication interface between the
Microcontroller and the Grove board but requires the use of the Acknowledge-signal on the
dio-pin of the TM1637, to ensure proper data transmission between Microcontroller and
Grove board.

Grove 4-digit display - Migrating an Arduino Library to Nspire Python

2020 T3 Europe - 3 -

The 4-digits TI-Innovator Hub hardware interface

Under firmware version 1.4, the TI-Hub is able to toggle its output pins at about 350Hz, when
the bbport() function is used. As its name suggests, bbport() can only be used with the BB
port pins of the TI-Hub. To allow users to use all features of the 4-digit display driver library,
under firmware 1.4 already, an interface using BB1 for the clk-signal and BB2 for the dio-
signal has been implemented, limiting the number of displays supported to one.
A digital.in()/digital.out() function call is yielding only about 10-15 samples per second. A
direct replication of the Arduino pinmode() I/O switching function in the TI-Hub under 1.4
would result in a very slow update of the 4-digit display, taking more than a second at best.
Along with the release of firmware 1.5, the digital.out() function will be much faster,
supporting ‘OUT1’ and ‘OUT 2’ as the preferred hardware interface for the 4-digit display.
This ensures two Grove displays can be used also in TI-Rover applications, while all BB pins
are consumed by the TI-Rover communication interface.
The TM1637’s maximum clk input frequency is specified at 500kHz, with data setup and hold
times in the < 500ns range. The TI-Hub speed is more than a factor of thousand slower than
the maximum speed of the TM1637 to receive data, so a compromise is taken to leave the
TI-Hub pins always as outputs to the Grove board, without checking the acknowledge signal
for a successful data transmission.

The hardware abstraction layer of the TI-Hub driver library under firmware 1.5

Communication between the Microcontroller and the Grove display is based on an 8-bit
protocol, requiring 8 clock cycles per packet. Each clock cycle is composed of two
digital.out() function calls, one to set the output to a low level, followed by a second one to
set the output to a high level. Setting up the desired command, the address of data being
written to and the data-bytes themselves easily can reach 48 clock cycles for a 4-digit display
update. One digital.out() function call takes about 2.8ms to execute in Python.
When OUT 1 and OUT 2 are being used, clk- and dio-pins have to be controlled sequentially,
through separate digital.out() statements. A 48 cycle clk/dio packet would need
48*2*2*2.8ms = 538ms to execute a full display update cycle, which is pretty slow.
To improve performance in spite of this hardware limitation, the Python code of the hardware
abstraction layer has to be optimized for speed. Figure 1 shows the code of the write_port()
function. The key element for speed optimization is to execute a digital.out() statement only
when there is a change in logic level versus the data sent in the previous write_port()
function call. This is accomplished by doing a bit-wise exclusive-OR test of the current clk/dio
data pair versus the previous data pair. Any change in logic level would trigger a digital.out()
function call for that data bit. In turn, no change in logic level would skip the digital.out()
function call for that bit. This results in an average of 2x speed improvement over a
conventional coding technique with addressing both signal pins each time data is written to.
Figure 2 shows the display update cycle execution speed for each number from zero to 100.
Speed ranges between 250-295ms, depending on the number of segments to update.

Grove 4-digit display - Migrating an Arduino Library to Nspire Python

2020 T3 Europe - 4 -

BB port selected?
Just write both bits to BB1/BB2
OUT1 or OUT2 selected?
Did both bits change vs. last call?
Yes, write to the dio port
And to the clk port (2*2.8ms)
Did only the dio bit change?
Write to the dio port (2.8ms)
Did only the clk bit change?
Write to the clk port (2.8ms)
Preserve the current state for the
next call.

Figure 1 write_port() function

 Figure 2 Grove display update speed, counting from 0 to 100

Grove 4-digit display - Migrating an Arduino Library to Nspire Python

2020 T3 Europe - 5 -

Code comparison – Arduino vs. Python

Figure 3 shows the setSegments() function implementation in Arduino, while figure 4 is
showing the exact same function implemented in Python.

Figure 3 setSegments() function in Arduino

Figure 4 setSegments() function in Python

While Arduino is strict on variable type declaration, this is not needed in Python, as Python is
supporting a dynamic variable type casting. Arduino also is strict on formatting symbols such
as ‘;’ and ‘{‘,’}’ while Python formatting relies on indentation. But, both programming
languages also have a lot of similarities: code density is the same (at least in this example)
and arithmetic and logic operators are the same, making it relatively easy to port major
portions of code from Arduino to Python and to maintain the same structure and
nomenclature of the function names.

Grove 4-digit display - Migrating an Arduino Library to Nspire Python

2020 T3 Europe - 6 -

Methods and attributes of TM1637 driver library

As described before, all methods are coded in a strictly hierarchical scheme, with a higher
level method building on a lower level method. A maximum of one Grove displays is
supported under firmware 1.4 and a maximum of three displays supported under 1.5.
An external power supply needs to be connected to the TI-Hub, as the Grove board may
draw up to 80mA.
All user level methods can be used with the TM1637display class, as listed in Table 1. The
hardware abstraction methods have been listed for completeness and better understanding
as well, but a user access of these methods is not recommended.

Table 1 List of callable methods of TM1637driver1.tns library

Method Abstraction
level

Attributes Defaults Description

__init__ N/A Port name
(BB, Out 1, Out 2)

N/A Initializes a TM1637display class object (BB only, under
firmware 1.4), max 3 objects under 1.5 and above
(Out 1/Out 2/BB)

setBrightness() User brightness level
(0…6), on/off

level 6 (highest), on first attribute sets the brightness level of the display,
second attribute used to turn the display on or off

setSegments() User list of segments, # of
digits, start position

of digits=4, start
pos=0

Allows segment level access to the display, for custom
character display

clear() User N/A N/A Clears all segment memory data bits

showNumberDec() User number,leading
zeroes,# of digits,
start position

leading
zeroes=off,digits=4,
pos=0

Displays pos/neg decimal number at defined length and
position, allows filling empty spaces with leading zeroes

showNumberDecEx() User base,number,dots,
leading zeroes,# of
digits, start position

dots=0,leading
zeroes=off,digits=4,
pos=0

Same as above, but allows setting of a decimal point (if
supported by Grove hardware) Some Displays have a
colon in the middle of the display and no decimal point

showNumberHexEx() User number,dots,leading
zeroes,# of digits,
start position

dots=0,leading
zeroes=off,digits=4,
pos=0

Same as above, but displays the value provided in
<number> as a hexadecimal number

showNumberBaseEx() User base,number,dots,
leading zeroes,# of
digits, start position

dots=0,leading
zeroes=off,digits=4,
pos=0

Same as above, but allows setting of the base (10=dec,
16=hex) the value shall be displayed

start() Hardware N/A N/A Initiates start of a protocol to TM1637
stop() Hardware N/A N/A Initiates the end of a protocol to TM1637
writeByte() Hardware data byte N/A sends data byte to TM1637
writeBit() Hardware port,value N/A writes single bit value to the port defined in <port>
write_port() Hardware ADC averaging avg=3 sends a dio/clk bit-pair to TM1637
show_dots() Hardware dots,digits N/A function used to display decimal points as part of the

showNumberXEx() functions mentioned above
encodeDigit() Hardware digit N/A digit-to-segment decoder function
ver() User N/A N/A returns ADXL335 library version info

Grove 4-digit display - Migrating an Arduino Library to Nspire Python

2020 T3 Europe - 7 -

TM1637driver_demos.tns – demonstrating driver library features

The TM1637driver1_demos.tns Python document contains a couple demo programs to get
the user familiar with the methods of the TM1637display() class and to inspire the user to
create new experiments using the Grove 4-digit display.

Table 2 List of demo programs contained in TM1637driver1_demos.tns

program name tab # brief desription
TM1637disptest.py 1.2 Code runs through all the

methods of the driver library,
providing code examples. The
expected display value of each
step is displayed in the shell
window for comparision

TM1637counter.py 1.4 Code runs in a loop from 0-100,
displaying the loop value at max
speed, with leading zeroes
alternating. A execution speed
protocol is created and
transferred to a spreadsheet
window

two_1637.py 1.6 Code driving 2 displays, one
showing pos, one negative loop
number. Execution speed is
recorded and available in a
spreadsheet

minus_test.py 1.8 Code shows a bug in the driver
library, not correctly positioning
the '-' sign, when leading zeroes
are used. This bug is also present
in the Arduino library. Feel free
to fix it :-)!

tm1637_clock.py 1.10 displays day/time values
obtained from localtime(). Use
d,s,h controls to change what is
displayed

list & spreadsheet
window

1.12 shows the speed data recorded
by the TM1637counter.py or
two_1637.py programs

statistics window 1.13 shows the speed data in graphical
form

Grove 4-digit display - Migrating an Arduino Library to Nspire Python

2020 T3 Europe - 8 -

Summary:

Besides creating a driver library of the 4-digit Grove display for the TI-Innovator system, this
project has been created to demonstrate the steps involved with migrating an existing driver
library from Arduino into Python. The biggest migration challenge was the hardware
abstraction layer, due to specific requirements and speed limitations of the TI-Hub compared
to an Arduino board. Speed optimization of the lowest level hardware driver code has led to
acceptable performance, with a minimum of changes (if at all) for the remainder of the library.
A big Thank You to Avishorp from Israel for having created a great driver library in Arduino
as a base for this project!

Sources:
[1] https://www.mcielectronics.cl/website_MCI/static/documents/Datasheet_TM1637.pdf
[2] https://github.com/avishorp/TM1637
[3] https://www.reichelt.de/de/de/arduino-display-grove-4-zahlen-tm1637-grv-4num-

display-p191185.html?r=1

 Teachers Teaching with TechnologyTM

